1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)简便运算

请数学好的人帮帮忙,谢谢!!!

1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)
=1/2[1/(1×2)-1/(2×3)+1/(2×3)-1/(3×4)+...+1/(9×10)-1/(10×11)]
=1/2×[1/(1×2)-1/(10×11)]
=1/2×(1/2-1/110)
=1/2×54/110
=27/110

公式:1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-08-19
∵1/(1*2*3)=(1/2)[(1-1/2)+(1/3-1/2)]
1/(2*3*4)=(1/2)[(1/2-1/3)+(1/4-1/3)]
1/(3*4*5)=(1/2)[(1/3-1/4)+(1/5-1/4)]
.........
.........
1/[n*(n+1)*(n+2)]=(1/2)[(1/n-1/(n+1))+(1/(n+2)-1/(n+1))]
∴1/1*2*3+1/2*3*4+1/3*4*5+...+1/n*(n+1)*(n+2)
=(1/2)[(1-1/(n+1))+(1/(n+2)-1/2)]
=(1/2)[1/2-1/(n+1)+1/(n+2)]
=(1/2){1/2-1/[(n+1)(n+2)]}
=(1/2)n(n+3)/[2(n+1)(n+2)]
=n(n+3)/[4(n+1)(n+2)]
1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)
=9*(9+3)/[4(9+1)(9+2)]
=108/440
=27/110
第2个回答  2013-08-19
应该是用裂项做的吧!
相似回答