1、利用3×8=24、4×6=24求解。把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
如3、3、6、10可组成(10—6÷3)×3=24等。又如2、3、3、7可组成(7+3—2)×3=24等。实践证明,这种方法是利用率最大、命中率最高的一种方法。
2、利用0、11的运算特性求解。如3、4、4、8可组成3×8+4—4=24等。又如4、5、J、K可组成11×(5—4)+13=24等。
3、在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)
①(a—b)×(c+d) 如(10—4)×(2+2)=24等。
②(a+b)÷c×d 如(10+2)÷2×4=24等。
③(a-b÷c)×d 如(3—2÷2)×12=24等。
④(a+b-c)×d 如(9+5—2)×2=24等。
⑤a×b+c—d 如11×3+l—10=24等。
⑥(a-b)×c+d 如(4—l)×6+6=24等。
扩展资料:
利用计算程序来计算二十四点。
首先建立两个栈,操作数栈OVS和运算符栈OPS。其中,操作数栈用来记忆表达式中的操作数,其栈顶指针为topv,初始时为空,即topv=0;
运算符栈用来记忆表达式中的运算符,其栈顶指针为topp,初始时,栈中只有一个表达式结束符,即topp=1,且OPS(1)=‘;’。此处的‘;’即表达式结束符。
然后自左至右的扫描待处理的表达式,并假设当前扫描到的符号为W,根据不同的符号W做如下不同的处理:
1、 若W为操作数
2、 则将W压入操作数栈OVS
3、 且继续扫描下一个字符
4、 若W为运算符
5、 则根据运算符的性质做相应的处理:
6、若运算符为左括号或者运算符的优先级大于运算符栈栈顶的运算符(即OPS(top)),则将运算符W压入运算符栈OPS,并继续扫描下一个字符。
7、若运算符W为表达式结束符‘;’且运算符栈栈顶的运算符也为表达式结束符(即OPS(topp)=’;’),则处理过程结束,此时,操作数栈栈顶元素(即OVS(topv))即为表达式的值。
8、若运算符W为右括号且运算符栈栈顶的运算符为左括号(即OPS(topp)=’(‘),则将左括号从运算符栈谈出,且继续扫描下一个符号。
9、若运算符的右不大于运算符栈栈顶的运算符(即OPS(topp)),则从操作数栈OVS中弹出两个操作数,设先后弹出的操作数为a、b,再从运算符栈OPS中弹出一个运算符,设为+,然后作运算a+b,并将运算结果压入操作数栈OVS。本次的运算符下次将重新考虑。
参考资料:百度百科_24点
要想不浪费流量,就玩吧 DFH XafOh/www.8100700.com?UlpWt