e^x/(1+e^2x)dx 求不定积分。求过程

如题所述

求不定积分∫(e^x)dx/[1+e^(2x)]
解一:原式=∫d(e^x)/[1+(e^x)²]=arctan(e^x)+C.
解二:令e^x=u,则d(e^x)=(e^x)dx=du,
故原式=∫du/(1+u²)=arctanu+C=arctan(e^x)+C.
温馨提示:内容为网友见解,仅供参考
第1个回答  2014-05-13

本回答被提问者采纳
相似回答