如何才能学好数学?

如题所述

1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成
“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
a.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
b.拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
c.建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
d.熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
e.经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
f.
阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
g.
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
h.
学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-01-16
以下就怎样学好数学提一点建议。一、提高听课的效率是关键。  学习期间,听课的效率如何,决定着学习的效果,提高听课效率应注意以下几个方面:1、课前预习能提高听课的针对性。  预习中发现的问题,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难,有助于提高思维能力;预习还可以培养自己的自学能力。2、听课要全神贯注。  全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。  耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结。  眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作。  心到:就是用心思考,与老师的教学思路保持一致。
  口到:就是主动回答问题或参加讨论。  手到:就是在听、看、想、说的基础上记下讲课的要点以及自己的感受。3、作好笔记,笔记不是记录而是将上述听课中的要点等作出简单扼要的记录,以便复习。二、及时复习。复习不是一遍遍地看书或笔记,而是采取回忆式的复习:先回忆上课老师所讲的内容,然后打开笔记与书本,对照一下还有哪些没记清的,补起来,这样就把当天内容巩固下来,同时也检查了当天听课的效果,也为改进听课方法及提高听课效果提出必要的改进措施。三、认真完成作业。有不少同学把提高数学成绩的希望寄托在大量做题上,这是不妥当的,重要的不在做题多,而在于做题精,效率要高。在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。另外要讲究做题的效率,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,是否还有别的解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验,更重要的是养成善于思考的好习惯,这将大大有利于今后的学习。当然没有一定量的练习就不能形成技能,也是不行的。
四,培养自学的能力。
如果不自学、不靠阅读理解,将会失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。五,建立良好的学习数学习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。另外,做题应把准确性与常规解法放在第一位,而不是一味地去追求速度或技巧,这也是学好数学的重要问题。六,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。随之信心也就会增强,学好数学也就水到渠成。
www.dkdoor.cn
第2个回答  2019-07-22
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授
的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化
思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联
想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互
用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成
“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新
精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问
题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看
书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
a.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
b.拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
c.建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误
原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
d.熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
e.经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
f.
阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
g.
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
h.
学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。本回答被网友采纳
第3个回答  2019-07-01
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
第4个回答  2019-08-14
如何学好数学
一、学习数学的原则
数学是门系统性强,前后内容联系十分紧密的学科。就教材而言,前面的内容往往是后面学习必备的基础,前面没有学好,肯定影响后面知识的学习。因此,学习数学必须遵循从基础学起,循序渐进,逐步扩展的原则。
二、学习数学的方法
学习数学必须多想多练,手脑并用。常见的方法有
1、及时归纳整理,使知识网络化
数学内容丰富,每学习一个阶段都要及时对所学知识和方法进行归纳整理,弄清知识的主干及与相关知识的联系,使其形成清晰的网络,这样以便理解记忆运用。
2、过手推演法
数学自始至终充满着推理和演算,学习数学必须注重推理,“眼过千遍,不如手过一遍”,对于书本上的推理演算,教师推演过了,自己都应动手推演一遍。这样有利将知识消化吸收,同时还应想一想,从现有的推演过程和结果,能否推演出什么新的结论,能否采用其它的推演方法。
3、图表法
图表具有形象直观的优点,能帮助思维和记忆。学习数学要尽可能的利用图表。解题时,与图有关或有可能利用图形的都要画出图形或图象,以便从中得到启发,归纳整理知识时,尽量用表格形式把知识系统化,以便理解记忆运用。
4、对比法
为了避免混淆和错误,常采用对比法学习,把相关知识进行对比。正逆对比,正反对比,正误对比,扩展对比,弄清知识之间的联系与区别,有助于正确运用。
三、学习数学要处理好的关系
1、难与易的关系
对易学的内容,不要轻视,易做的题,不要马虎。对较难的问题要分析,不要急于求成,更不要轻易放弃,要有滴水穿石,锲而不舍的精神。
2、结论与过程的关系
学习数学,不能重结论,轻过程。记数学结论是必要的,但对于推出这些结论的过程尤其不能忽视。因为许多推导过程渗透和隐含着常用的数学思想方法,领会和把握研究数学问题的思想方法,对于运用数学工具分析和解决实际问题是很有意义的。例如:数学中的逻辑思维方法(分类与类比、归纳与演绎、分析与综合、证明与反驳);数学中的非逻辑思维方法(想象与联想、直觉与灵感)。数学中转化的基本形式(特殊与一般,整体与局部,具体与抽象,数与形,高与低,正与反,已知与未知,无限与有限)。
3、质与量的关系
数学知识转化为能力,必须经过系统的严格训练。学习数学,练习少了不行。数学练习既要讲求量,更要讲求质。讲求质,也就是做题时不仅要做到解答准确、规范,过程要尽可能的简洁合理,还要养成检验的习惯。另外,对有代表性的问题,做完以后要加以回顾和小结,从中找出解答这一类问题的规律,做一些变通性、发展性的思考,这样更能提高自己的数学能力。
四、学习数学要注意的问题
1、数学发展的几个直接动因
数学问题,数学观念,数学符号,数学美学标准是数学发展的直接动因。现在,计算机给数学带来新的挑战。
2、数学方法的现代发展趋势
数学抽象化方法呈现新的特点,综合性方法日显威力,反常规方法将独领风骚,渗透性方法使数学四处结缘;多重对立数学理论独立发展并存,计算机对数学的推动作用不可估量
相似回答