从前有一位老年人,在他临终时,三个儿子围在床前。
他对儿子们说:“我有十七匹马,留给你们,三个人分。分马的时候,老大呢,出力最多,得总数的二分之一;老二嘛,得总数的三分之一;老三最小,你呀,就拿总数的九分之一。”
勉强说完这几句,老人就去世了。三兄弟执行遗嘱时,一致认为这些马是父亲生前心爱之物,决不能将其中任何一匹劈成几块瓜分。但是遗嘱又要完全照办,如何是好呢?
正巧,这时他们的老娘舅骑马赶来了,听完事由,眉毛一扬,说:“我来分。”
猜猜看,老娘舅怎样分马?
因为希望每人得到的马都是整数匹,所以根据遗嘱,在分马的时候,马的匹数应该是三个分母的公倍数。分母2、3、9的最小公倍数是18,因而在分马时的马匹总数最好能成为18的倍数。老人留给儿子们的马是17匹,老娘舅把自己带来的一匹马临时借出来凑数,共有18匹马参加分配。
准备就绪,老娘舅开始宣读和执行遗嘱:
“……分马的时候,老大呢,出力最多,得总数的二分之一……”宣读到这里,老娘舅数出9匹马,让老大领过去:
老二嘛,得总数的三分之一……”读到这里,老娘舅数出6匹马,让老二领过去:
“老三最小,你呀,就拿总数的九分之一。”读完最后这一句,老娘舅数出2匹马,让老三领过去:
三位晚辈分到手的马,总和恰好是父亲留下的17匹:
9+6+2=17。
分马场地上的18匹马,现在剩下最后一匹,这当然就是老娘舅自己带来临时借用的那匹,依然物归原主。
取胜的对策
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。如果让你先报数,你第一次应该报几才能一定获胜?
分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。88=9×9+7,依次类推,谁报数后使和为16,谁就获胜。进一步,谁先报7,谁就获胜。于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。这样,当你报第10个数的时候,就会取得胜利。
狐狸瘸着腿一拐一拐地走着,心里琢磨着怎样才能发财。
瘸腿狐狸看见老山羊在卖大葱,走过去问:“老山羊,这大葱怎样卖法?共有多少葱啊?”
老山羊说:“1千克葱卖1元钱,共有100千克。”
瘸腿狐狸眼珠一转,问:“你这葱,葱白多少,葱叶又是多少呀?”
老山羊颇不耐烦地说:“一棵大葱,葱白占20%,其余80%都是葱叶。”
瘸腿狐狸掰着指头算了算,说:“葱白哪,1千克我给你7角钱。葱叶哪,1千克给你3角。7角加3角正好等于1元,行吗?”
老山羊想了想,觉得狐狸说得也有道理,就答应卖给他了。狐狸笑了笑,开始算钱了。
狐狸先列了个算式:
0.7×20+0.3×80=14+24=38(元),然后说:“100千克大葱,葱白占20%,就是20千克。葱白1千克7角钱,总共是14元;葱叶占80%,就是80千克,1千克3角钱,总共是24元。合在一起是38元。对不对?”
老山羊算了半天,也没算出个数来,只好说:“你算对了就行。”
“我狐狸从不蒙人!给你38元,数好啦!”狐狸把钱递给了老山羊。老山羊卖完葱往家走,总觉得这钱好像少了点,可是少在哪儿呢?想不出来。他低头看见小鼹鼠从地里钻了出来。他让小鼹鼠帮忙算算这笔帐。
小鼹鼠说:“你原来大葱是1千克卖1元。你有100千克,应该卖100元才对,瘸狐狸怎么只给你38元呢?”
老山羊点了点头,知道自己吃亏了。可是他不明白,自己是怎样吃的亏?
鼹鼠说:“狐狸给你1千克葱白7角,1千克葱叶3角,合起来算是2千克才1元钱,这你已经吃一半亏了。”
老山羊问:“吃一半亏,我也应该得50元才对,怎么只得38元呢?”
鼹鼠写了一个算式:
(1-0.7)×20+(1-0.3)×80=6+56=62(元)。“你1千克葱白吃亏0.3元,20千克吃亏6元;1千克葱叶吃亏0.7元,80千克吃亏56元,合起来正好少卖了62元。”
老山羊掉头就往回跑,看见狐狸正在卖葱,每千克卖2元。老山羊二话没说,一低头,用羊角顶住瘸腿狐狸的后腰,一直把他顶进了水塘里。
亲,我写的就是五年级的啊,直接写了答案哦
有答案吗
追答没有
是小学五年级可以解决的吗
追答应该可以~