怎么用直接开平方法解一元二次方程

如题所述

1、一般是形如  或  的一元二次方程可采用直接开平方法,其具体解题过程如下图所示:

2、举例用直接开平方法解一元二次方程:

扩展资料:

1、只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项

2、使用直接开平方法解一元二次方程,要注意:

(1)等号左边是一个数的平方的形式而等号右边是一个常数。

(2)降次的实质是由一个一元二次方程转化为两个一元一次方程

(3)方法是根据平方根的意义开平方。

参考资料:百度百科_一元二次方程

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-11-22
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)²=n (n≥0)的 方程,其解为x=±√n+m .
例:解方程(3x+1)²=7
∵(3x+1)²=7
∴3x+1=±√7
∴x= ﹙﹣1±√7﹚/3
∴原方程的解为x1=﹙√7﹣1﹚/3,x2=﹙﹣√7-1﹚/3
2、配方法:用配方法解方程ax²+bx+c=0 (a≠0) .先将常数c移到方程右边:ax²+bx=-c ,将二次项系数化为:x²+bx/a=- c/a ,方程两边分别加上一次项系数的一半的平方:x²+bx/a+( b/2a)²=- c/a+( b/2a)²,方程左边成为一个完全平方式:(x+b/2a)²= -c/a﹢﹙b/2a﹚² .当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ,所以x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)
例:用配方法解方程 3x²-4x-2=0
将常数项移到方程右边 3x²-4x=2
将二次项系数化为:x²-﹙4/3﹚x= 2/3
方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=2/3 +(4/6 )²
配方:(x-4/6)²= 2/3 +(4/6 )²
直接开平方得:x-4/6=± √[2/3+(4/6 )² ]
∴x= 4/6± √[2/3 +(4/6 )² ]
原方程的解为x1=4/6﹢√﹙10/9﹚,x2=4/6﹣√﹙10/9﹚
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) ,(b²-4ac≥0)就可得到方程的根.
例:用公式法解方程 2x²+4x+1=0
∴a=2,b=4 ,c=1
⊿=b²-4ac=16-4*2*1=8>0
x=(-b±√⊿)/(2a)=(-4±2√2)/4=(-2±√2)/4
∴原方程的解为x1=(-2+√2)/4 x2==(-2-√2)/4
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.
例:用因式分解法解方程:6x²+5x-50=0
6x²+5x-50=0
(2x-5)(3x+10)=0
∴2x-5=0或3x+10=0
∴原方程的解x1=5/2,x2=-10/3
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.
直接开平方法是最基本的方法.
公式法和配方法是最重要的方法.
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法(换元法,配方法,待定系数法)之一,一定要掌握好.本回答被网友采纳
第2个回答  2019-09-01
(x-m)²=n (n≥0)
用直接开平方法解方程:先将常数项移到右边,再将左右两边能约分的约分,不能约分的话,就将常数开根号除以项数,然后加减m,得出X1和X2。
第3个回答  2015-10-25
先移项,再根据二次项系数和一次项系数来确定可以构成完全平方公式的常数项(既不含未知数的项),依据为(a+b)²=a²+2ab+b²。最后两边开平方,转化为一道或两道一元一次方程来解。
相似回答