一元二次方程的解法,需要详细的

如题所述

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:   
1、直接开平方法;
2、配方法;
3、公式法;
4、因式分解法。   

1、直接开平方法:   直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m .   
  

2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   
先将常数c移到方程右边:ax^2+bx=-c   
将二次项系数化为1:x^2+b/ax=- c/a   
方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   
方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   
当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   
∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a (这就是求根公式)   

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。   

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。  

  小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。   

直接开平方法是最基本的方法。   

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。   

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答