贝兹曲线就是贝塞尔曲线,解释如下:
贝塞尔曲线也称贝兹曲线,一般的矢量图形软件通过它来精确画出曲线,贝兹曲线由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋,我们在绘图工具上看到的钢笔工具就是来做这种矢量曲线的。当然在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。在Flash4中还没有完整的曲线工具,而在Flash5里面已经提供出贝塞尔曲线工具。
贝塞尔函数
Bessel functions
利用柱坐标求解涉及在圆、球与圆柱内的势场的物理问题时出现的一类特殊函数。又称标函数。用柱坐标解拉普拉斯方程时,用到贝塞尔函数,它们和其他函数组合成柱调和函数。除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。贝塞尔函数最早出现在涉及如悬链振荡,长圆柱体冷却以及紧张膜振动的问题中。贝塞尔函数的一族,也称第一类贝塞尔函数,记作Jn(x),用x的偶次幂的无穷和来定义,数 n称为贝塞尔函数的阶,它依赖于函数所要解决的问题。J0 (x) 的图形像衰减的余弦曲线,J1(x)像衰减的正弦曲线( 见图 )。第二类贝塞尔函数( 又称诺伊曼函数 ),记作Yn(x),它由第一类贝塞尔函数的简单组合来定义。第三类贝塞尔函数(亦称汉克尔函数)定义为Hn=Jn±iYn,其中i为虚数,用n阶( 正或负 )贝塞尔函数可解称为贝塞尔方程的微分方程。
使用方法:
用“贝塞尔”工具无论是画直线或是曲线,都非常简单,随手可得。其操作特点是通过用鼠标在面板上放置各个锚点,根据锚点的路径和描绘的先后顺序,产生直线或者是曲线的效果。我们都知道路径由一个或多个直线段或曲线段组成。锚点标记路径段的端点。在曲线段上,每个选中的锚点显示一条或两条方向线,方向线以方向点结束。方向线和方向点的位置确定曲线段的大小和形状。移动这些元素将改变路径中曲线的形状,可以看右图。路径可以是闭合的,没有起点或终点(如圆圈),也可以是开放的,有明显的端点(如波浪线)。
温馨提示:内容为网友见解,仅供参考