第1个回答 2007-10-03
n/(1*2*3*...*(n+1)=[1/n!-1/(n+1)!]
所以原式=1-1/(n+1)!
第2个回答 2007-10-03
an=1/(1*2*3*...*n)-1/(1*2*3*...*(n+1))
原式=a1+a2+a3+...+an
=1/1-1/1*2+1/1*2-1/1*2*3+1/1*2*3-1/1*2*3*4+...+1/(1*2*3*...*n)-1/(1*2*3*...*(n+1))
=1-1/(1*2*3*...*(n+1)).
第3个回答 2007-10-03
取an=n/(1*2*3*...*(n+1)),则
an=1/(1*2*3*...*n)-1/(1*2*3*...*(n+1))
原式=a1+a2+a3+...+an
=1/1-1/1*2+1/1*2-1/1*2*3+1/1*2*3-1/1*2*3*4+...+1/(1*2*3*...*n)-1/(1*2*3*...*(n+1))
=1-1/(1*2*3*...*(n+1)).
第4个回答 推荐于2021-01-21
1/(1*2)+2/(1*2*3)+3/(1*2*3*4)+...+n/(1*2*3*...*(n+1))
=1-1/2+1/2-1/(2*3)+1/(2*3)-1/(2*3*4)+...+1/(2*3*..*n)-1/(3*4*5*....*(n+1))
=1-1/(3*4*5*....*(n+1))本回答被提问者采纳
第5个回答 2007-10-03
=1/(1*2)+1/(1*2)-1/(1*2*3)+1/(1*2*3)......-1/(1*2*3*...*(n+1))=1-1/(1*2*3*...*(n+1))