小学毕业数学复习资料

如题所述

基础题:1、某乡要挖一条长500米的水渠,已经挖了60%,还剩下多少米没挖?
2、小明读一本故事书,已经读了全书的55%,比没读的多10页。这本书供多少页?
3、一个圆柱形的玻璃金鱼缸,从里面量得它的底面半径是2分米,高是3分米。这个金鱼缸的容积是多少升?
4、一个圆柱形铁皮油桶内装有半桶汽油,现倒出汽油的五分之三后,还剩12升汽油。如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?
5、在一个底面半径6厘米,高9厘米的圆锥形容器中注满水,再把水倒入等底等高的圆柱形容器中,圆柱形容器里水高是多少厘米?
6、一架飞机所带的燃料最多可用6小时,飞机飞出时逆风,每小时飞行600千米,返回时顺风,每小时飞行750千米。这架飞机最多飞出多少千米就需返航?
奥数题:1、某种饮料瓶的容积是3升,它的瓶身呈圆柱形(不包括瓶颈)。现在瓶中装有一些饮料,正放时饮料高度是20厘米,倒放时空余部分的高度是5厘米。瓶中现有饮料多少升?
2、将10毫升水装入一个圆锥形容器中,水深正好占容器深的二分之一。再添入多少毫升水可装满此容器?
3、一位足球运动员沿着720米长的湖边跑了一圈。已知他前一半的时间每秒跑5米,后一半时间每秒跑四米,那么他后一半路程用了多少秒?

甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。求A、B两地相距多少米?
2.甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。甲、乙两车的速度各是多少?
3.下图是十字道路,甲在南北路上,由北向南行进,乙在东西路上,由东向西行进。甲出发点在两条路交叉点北1120米,乙出发点在交叉点上。两人同时出发,4分钟后,甲、乙两人所在的位置距交叉点的路程相等。(这时甲仍在交叉点北)再经过52分钟后,两人所在的位置又距交叉点路程相等。(这时甲在交叉点南)求甲、乙两人每分钟各行几米。

4.甲、乙、丙三人每分钟的速度分别为30米、40米、50米,甲、乙在A地同时同向出发,丙从B地同时出发去追赶甲、乙,丙追上甲以后又经过10分钟才追上乙。求A、B两地的距离。
5.上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米。问这时是几时几分?
6.如图,两只小爬虫从A点出发,沿长方形ABCD的边,按箭头方向爬行,在距C点32厘米的E点它们第一次相遇,在距D点16厘米的F点第二次相遇,在距A点16厘米的G点第三次相遇,求长方形的边AB的长。

7.在与铁路平行的公路上,一个步行的人和一个骑自行车的人同向前进,步行人每秒走l米,骑车人每秒走3米,在铁路上,从这两人后面有列火车开来,火车通过行人用了22秒,通过骑车人用了26秒。这列火车全长多少米?
8.一只小船,第一次顺流航行56千米,逆流航行20千米,共用12小时;第二次用同样的时间,顺流航行40千米,逆流航行28千米。求这只小船在静水中的速度。
9.甲、乙两班学生到离校24千米的飞机场参观,有一辆汽车,一次只能乘坐一个班的学生。为了尽快地到达机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在中途下车步行去飞机场,汽车立即返回接在途中步行的乙班学生。已知甲、乙班步行速度相同,汽车的速度是步行的7倍。问汽车应在距机场多少千米处返回接乙班学生,才能使两班学生同时到达机场。
10.有一个三位数,它的十位上的数字等于个位上的数字与百位上的数字的和;而个位上的数字与十位上的数字的和等于8;百位上的数字与个位上的数字互相调换后,所得的三位数比原数大99。求这个三位数。

糖,这盘水果糖共有多少粒?
12.甲、乙两人分别从A、B两地同时相向而行,4小时后在途中相
程的几分之几才可以到达B地?
13.甲、乙两个容器分别装有水及浓度为50%的酒精各400升,第一次从乙中倒给甲一半酒精溶液,混合后再从甲中倒一半给乙,混合后再从乙中倒一半给甲。此时甲中含有多少升纯酒精?
14.甲、乙、丙三人合修一堵围墙,甲乙两人先合修6天,修好了这堵
修了5天才全部完成,他们共得工资1620元,根据各人实际完成的工作量来分配,甲应得多少元?

一年级
教学内容
(一) 数与计算
(1)20以内数的认识。加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和连加、连减和加减混合式题。
(2)100以内数的认识。加法和减法。
数数。个位、十位。数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二) 量与计量
钟面的认识(整时)。
人民币的认识和简单计算。
(三) 几何初步知识
长方体、正方体、圆信和球的直观认识。
长方体、正方形、三角形和圆的直观认识。
(四) 应用题
比较容易的加法、减法一步计算的应用题。
(五)实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
教学要求
1. 过数不同物体的个数,逐步抽象出数。会区分几个和第几个。掌握10以内数的组成。会正确、工整地书写数字。
2. 认识计数单位"一"和"十",初步理解个位、十位上的数表示的意义。熟练地数100以内的数,会读、写100以内的数。掌握100以内的数是由几个十和几个一组成的。掌握100以内数的顺序,分比较100以内数的大小。
3. 知道加、减法的含义,加、减法算式中各部分的名称,加法和减法的关系户。熟练地口算一位数的加法和相应的减法,比较熟练地口算两位数加、减整十数和两位数加、减一位数。会计算加减法两步式题。
4. 认识符号"="">""<",会使用这些符号表示数的大小。
5. 认识钟面,会看整时。认识人民币。知道1元=10角,1角=10分。要爱护人民币。
6. 会根据加、减法的含义解答比较容易的加、减法一步计算的应用题。知道题目中的条件和问题,会列出算式,注明得数的单位名称,口述答案。
7. 培养学生认真做题、计算正确、书写整洁的良好习惯。
8. 通过实践活动,使学生体验数学与日常生活的密切联系。

二年级
教学内容
(一) 数与计算
(1)两位数加、减两位数。
两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。
乘法的初步认识。乘法口诀。乘法口诀。乘法竖式。
除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。
数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。
加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。
先乘除后加减。两步计算的式题。小括号。
(二) 量与计量
时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识。
(三) 几何初步知识。
直线和线段的初步认识。
角的初步认识。直角。
(四) 应用题
加法和减法一步计算的应用题。
乘法和除法一步计算的应用题。
比较容易的两步计算的应用题。
(五) 实践活动
与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
教学要求
1.认识计数单位"百""千"和"万",知道相邻两个计数单位之间的十进关系。掌握万以内的数位顺序,会读数、写数,会比较数的大小。
2.掌握加、减法的笔算法则。会用竖式计算比较简单的连加式题。比较熟练地口算两位数加、减两位数(和在100以内),会口算整百、整千数的加、减法和几百几十加、减整百或整十的数,会用交换加数的位置验算加法和用加法验算减法。初步培养学生检查和验算的习惯。
3.知道乘、除法的含义和乘、除法算式中各部分的名称,乘法和除法的关系。知道乘法口诀求积、求商。熟练地计算除数是一位数、商也是一位数的有余数的除法。
4.初步掌握混合运算顺序,会计算两步式题。认识小括号。
5.认识长度单位米、分米、厘米。知道1米、1厘米的实际长度。知道1米=10分米,1分米=10厘米。会进行长度的简单计算。
6.认识质量单位千克(公斤),初步建立1千克的质量观念。
7.认识时间单位时、分、秒。知道1时=60分,1分=60秒。初步建立时、分、秒的时间观念。养成遵守和爱惜时间的良好习惯。
8.步认识直线和线段,会量线段的长度和画线段(限整厘米)。
9.初步认识角和直角,知道角的各部分名称。会用三角尺判断直角和画直角。
10.会解答加、减、乘、除一步计算的应用题。会分步列式解答比较容易的两步计算的应用题。
11.通过实践活动,初步培养学生的数学意识。

三年级
教学内容
(一) 数与计算
(1)一位数的乘、除法。
一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除法是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数乘、除法。
一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算
乘法验算。除数是两位数的除法。
连乘、连除的简便算法。
(3)四混合运算。
三步计算的式题。小括号的使用。
(4)分数的初步认识。
分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。
(二) 量与计量
千米(公里)、毫米认识和简单计算。
吨、克的认识和简单科计算。
面积单位。
(三) 几何初步知识
长方形和正方形的特征。长方形和正方形的周长。
平行四边形的直观认识。
面积的含义。长方形、正方形的面积。
(四) 应用题
常见的数量关系。解答两步计算的应用题。
(五) 实践活动
联系周围事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
教学要求
1. 掌握一位数乘、除多位数(一般不超过三位数)的笔算法则,能够比较熟练地计算。会用乘法验算除法(包括有余数的除法)。
2. 掌握两位数的乘、除法的笔算法则,会笔算乘除法。会用交换乘数的位置验算乘法。会口算一位数乘、除两位数(积在100以内)。会口算乘数、除数是整十数的乘、除法。学会一些简便算法。
3. 掌握四则混合运算的顺序,会计算三步式题。会使用小括号。
4. 初步认识分数,会读、写简单的分数。会比较同分母分数的大小。初步学会计算简单的同分母分数的加、减法。
5. 认识长度单位千米(公里)、毫米。知道1千米=1000米,1厘米=10毫米。认识质量单位吨、克,知道1吨=1000千克,1千克=1000克。会进行长度和质量的简单计算。
6. 初步掌握长方形、正方形的特征。会在方格纸上画长方形和正方形。知道周长的含义,会计算长方形和正方形的周长。
7. 知道面积的含义。认识面积单位(平方米、平方分米、平方厘米)。初步建立1平方米、1平方分米、1平方厘米的面积观念。掌握长方形和正方形的面积计算公式。
8. 掌握常见的数量关系。学会解答两步计算的应用题。
9. 通过实践活动,初步培养学生的数学意识。

四年级
教学内容
(一) 数与计算
(1)亿以内数的读法和写法。
计数单位"十万""百万""千万"。相邻计数单位间的十进关系。亿以内数读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。
接近整十、整百数的加、减法的简便算法。
加、减法算式中各部分之间的关系。求未知数X。
(3)乘法和除法。
积的变化。商不变的性质。被除数和除数末尾有0的简便算法。
乘数接近整十、整百的简便算法。
乘、除法算式中各部分之间的关系,求未知数X。
(4)大数目估算①。算盘或计算器的介绍。
(5)四则混合运算。
中括号。三步计算的式题。
(6)整数及其四则运算的关系和运算定律。
自然数与整数。十进制计数法。读法和写法。
四则运算的意义。加法和减法、乘法与除法之间的关系。整除和有余数的除法。
运算定律。简便运算。
(7)小数的意义、性质。加法和减法。
小数的意义、性质。小数的大小的比较。小数点移位引起小数大小的变化。小数的近似值。
加法和减法。加法运算定律推广到小数。
(二) 量与计量
年、月、日。平年、闰年。世纪。24时计时法。
角的度量。
面积单位。
(三) 几何初步知识。
直线的测定。测量距离(工具测、步测、目测)。
射线。直角、锐角、钝角、平角、*周角①。垂线。画垂线。平行线。画平行线。
三角形的特征。三角形的内角和。
(四) 统计初步知识
简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。
(五) 应用题
解答两步计算的应用题。解答比较容易的三步计算的应用题。
(六) 实践活动
联系周围事物组织活动。例如假期里,学生小组组织一次考察活动,根据预算,每人需交纳活动费多少元。
教学要求
1. 认识计数单位"十万""百万""千万",掌握十进制计数法。会根据数级读、写多位数。认识自然数和整数。会根据要求杷一个数用四舍五入法省略尾数,写出近似数。
2. 会口算整万数的加、减法。几百几十加、减几百几十。学会接近整十、整百数的加、减法的简便算法,能够灵活地进行计算。初步掌握加、减法算式中各部分之间的关系,会根据这种关系求未知数x。
3. 用交换乘数的位置验算乘法。知道商不变的性质。会口算乘数、除数是整百数的乘、除法。学会一些简便算法。初步掌握乘、除法算式中各部分之间的关系,会根据这种关系求未知数x。
4. 理解四则运算的意义,掌握加法与减法、乘法与除法之间的关系,使学生受到辩证唯物主义观点的启蒙教育。能应用运算定律进行一些简便运算。会进行带有中括号的四则运算。
5. 理解小数的意义和性质。比较熟练地进行小数加、减法笔算(对位数个数的限制与整数加、减法相同)和简单的口算。
6. 认识时间单位年、月、日,知道平年与闰年以及各月的天数。会用24时计时法表示时刻。
7. 认识射线和角,知道角的大小,会用量角器量角和按照指定的度数画角。初步认识垂线和平行线,会用直尺和三角尺画垂线、平行线、长方形和正方形。掌握三角形的特征。知道三角形内角和。
8. 认识土地面积单位(公顷、平方千米)。初步学会用测量工具在地面上测定直线和测量较短的距离。
9. 初步认识简单的统计图表。初步了解收集、整理数据的过程。初步理解平均数的意义。会求简单的平均数。通过统计材料,使学生了解我国社会主义建设的成就。
10.会解答两步计算的应用题。会解答比较容易的三步计算的应用题。
11.结合解题和计算,进一步培养学生检查和验算的习惯,认真负责的态度。
12.通过实践活动,培养学生从周围情境中发现数学问题,运用所学知识解决问题的能力,培养学生的数学意识。

五年级
教学内容
(一) 数与计算
(1)数的整除。
能被2、5、3整除的数的特征。奇数和偶数。质数和合数。100以内质数表。分解质因数。约数和倍数。公约数和公倍数。求最大公约数。求最小公倍数。
(2)小数的乘法和除法。
乘法和除法。积和商的近似值。循环小数。乘法运算定律推广到小数。
不数四则混合运算(不超过三步)。
* (3)用计算器进行大数目的计算或探索有关规律。
(4)分数的意义和性质。
分数的意义。分数单位。分数大小的比较。分数与除法的关系。真分数和假分数。带分数。分数的基本性质。约分。通分。分数和小数的互化。
(5)分数的加法和减法。
分数加、减法的意义。分数加、减法运算(不含带分数)。加法的运算定律推广到分数。分数、小数加、减混合运算。
(二) 代数初步知识
用字母表示数。简易方程(ax±b=c,ax±bx=c)。列方程解应用题。
(三) 量与计量
体积单位。
单名数和复名数(计算面积或体积一般不使用复名数)。
(四) 几何初步知识
平行四边形和梯形的特征。平行四边形、三角形和梯形的面积。*组合图形。
长方体和正方体的特征。长方体和正方体的表面积。体积的含义,长方体和正方体的体积。
(五) 统计初步知识
数据的收集和分类整理。简单的统计表。根据收集的数据求平均数。
(六) 应用题
相遇问题。解答三步计算的应用题。
(七) 实践活动
联系学生所接触到的社会情况组织活动。例如调查某月10家住户水、电、燃气费和房租分别交纳的钱数或10家农户各种农作物的年产量,提出一些数学问题。
教学要求
1. 知道整除、约数和倍数、质数和合数等概念,了解它们之间的联系和区别。掌握能被2、5、3整除的数的特征。会分解质因数(一般不超过两位数)。会求最大公约数(限两个数的)和最小公倍数(不要求综合运用以上概念)。
2. 比较熟练地进行小数乘、除法笔算(对位数个数的限制与整数乘除法相同)和简单的口算。会用四舍五入法截取积、商的近似值。会进行小数四则混合运算(不超过三步)。
3. 理解分数的意义和基本性质。会比较分数的大小,比较熟练地进行约分和通分。会进行分数与小数的互化。理解分数加、减法的意义。掌握分数加、减法的计算法则,能够比较熟练地计算分数加、减法。正确地进行分数加减混合运算。会口算简单的分数加、减法。
4. 会用字母表示数、常见的数量关系、运算定律和公式。初步理解方程的意义,会解简易方程。
5. 掌握常见的计量单位和单位间的进率。会进行简单的单名数与复名数的互化。
6. 掌握平行四边形和梯形的特征。掌握平行四边形、三角形和梯形的面积计算公式。
7. 掌握长方体和正方体的特征,会计算它们的表面积。知道体积的含义,认识常用的体积单位(立方米、立方分米、立方厘米,升、毫升)。掌握长方体和正方体的体积计算公式。
8. 初步学会收集数据和分类整理,会填写简单的统计表。会根据收集的数据求平均数。通过有说服力的数据和统计材料,使学生受到爱祖国、爱社会主义的思想教育。
9. 会解答三步计算的应用题。初步学会列方程解应用题。能初步运用所学的知识解决生活中一些简单的实际问题。
10.通过实践活动,培养学生从周围情境中发现数学问题,运用所学知识解决问题的能力,培养学生的数学意识。

六年级
教学内容
(一) 数与计算
(1)分数的乘法和除法。
分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。
分数除法的意义。分数除法。
(2)分数四则混合运算。
分数四则混合运算。
(3)百分数。
百分数的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(二) 比和比例
比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三) 几何的初步知识
圆的认识。圆周率。画圆。圆的周长和面积。*扇形的认识。轴对称图形的初步认识。
圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。*球和球的半径、直径的初步认识。
(四) 统计初步知识
统计表。
条形统计图,折线统计图,*扇形统计图。
(五) 应用题
分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六) 实践活动
联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七) 整理和复习
教学要求
1. 理解分数乘、除法的意义。掌握分数乘、除法的计算法则。会计算分数乘、除法。会口算简单的分数乘、除法。会进行分数四则混合运算(不超过三步)。
2. 理解百分数的意义。知道百分数在实际中的应用。会进行有关百分数的计算。
3. 理解比的意义和性质。会求比值和化简比。理解比例的意义和基本性质。会解比例。理解正、反比例的意义。会判断两个量是否成正比例或反比例。通过比例的教学,使学生进一步受到辩证唯物主义观点的启蒙教育。
4. 认识圆。会画圆。掌握圆的周长和圆面积的计算公式。通过介绍圆周率的史料,使学生受到爱国主义教育。
5. 认识圆柱和圆锥。会计算圆柱的表面积和圆柱、圆锥的体积。
6. 会制作简单的统计表,利用作图绘制简单的统计图。会对统计图表进行一些简单的分析,使学生受到国情教育。绘制统计图表要注意整洁、美观。
7. 会解答分数、百分数应用题(最多不超过两步)。会用比例的知识解答比较容易的应用题。会看地图上的比例尺。
8. 通过实践活动,使学生初步了解数学与社会的联系,进一步感受数学的应用。
9. 通过系统的整理和复习,巩固和加深理解小学阶段所学的数学知识。能够比较合理、灵活地进行计算,会按照题目的具体情况选择简便的解答方法,运用所学的知识解决生活中一些简单的实际问题。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-11-18
数学图形计算公式 :1、正方形 (C:周长 S:面积 a:边长)
  周长=边长×4 C=4a
  面积=边长×边长 S=a×a
  2、正方体 (V:体积 a:棱长 )
  表面积=棱长×棱长×6 S表=a×a×6
  体积=棱长×棱长×棱长 V=a×a×a
  3、长方形( C:周长 S:面积 a:边长 )
  周长=(长+宽)×2 C=2(a+b)
  面积=长×宽 S=ab
  4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
  (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
  (2)体积=长×宽×高 V=abh
  5、三角形 (s:面积 a:底 h:高)
  面积=底×高÷2 s=ah÷2
  三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
  6、平行四边形 (s:面积 a:底 h:高)
  面积=底×高 s=ah
  7、梯形 (s:面积 a:上底 b:下底 h:高)
  面积=(上底+下底)×高÷2 s=(a+b)× h÷2
  8、圆形 (S:面积 C:周长 л :圆周率 d=直径 r=半径)
  (1)周长=直径×л=2×л×半径 C=лd=2лr
  (2)面积=半径×半径×л
  9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
  (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
  (3)体积=底面积×高 (4)体积=侧面积÷2×半径
  10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
  体积=底面积×高÷3
  11、总数÷总份数=平均数
  12、和差问题的公式
  (和+差)÷2=大数 (和-差)÷2=小数
  13、和倍问题
  和÷(倍数+1)=1倍数 1倍数×倍数=几倍数 (或者 和-1倍数=几倍数)
  14、差倍问题
  差÷(倍数-1)=1倍数 1倍数×倍数=几倍数 (或 1倍数+差=几倍数)
  15、相遇问题
  相遇路程=速度和×相遇时间
  相遇时间=相遇路程÷速度和
  速度和=相遇路程÷相遇时间
  16、浓度问题
  溶质的重量+溶剂的重量=溶液的重量
  溶质的重量÷溶液的重量×100%=浓度
  溶液的重量×浓度=溶质的重量
  溶质的重量÷浓度=溶液的重量
  17、利润与折扣问题
  利润=售出价-成本
  利润率=利润÷成本×100%=(售出价÷成本-1)×100%
  涨跌金额=本金×涨跌百分比
  利息=本金×利率×时间
第2个回答  2021-11-25
这个篮球优惠后的价格是68元,优惠了多少元,原价25元,减价优惠了x元648+x等于八十五六十八+x- 18=85+6x=18
第3个回答  2012-03-23
一、小学部分
1、 每份数×份数=总数 ; 总数÷每份数=份数 ; 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷ 工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1、正方形:C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a
3、长方形
C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体

V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高 面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积 h:高 s底面积 r底面半径 c底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数

和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)

差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)

植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)

2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间

追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间

流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2

浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量

利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米

面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米

体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升

重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤

人民币单位换算
1元=10角
1角=10分
1元=100分

时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天, 闰年全年366天
1日=24小时 1小时=60分
1分=60秒 1小时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
第4个回答  2011-04-26
小学数学复习考试知识点汇总
一、小学生数学法则知识归类
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(二十七)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差 被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商 被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.
8、(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180°.
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数+加数 加数=和-另一加数
17、减法各部分间的关系:
差=被减数-减数 减数=被减数-差 被减数=减数+差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数×因数 一个因数=积÷另一个因数
21、(1)除法各部分间的关系:
商=被除数÷除数 除数=被除数÷商
(2)有余数的除法各部分间的关系:
被除数=商×除数+余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫最大公约数?
几个数公有的约数叫公约数。其中最大的一个叫最大公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、比
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、长方体和正方体
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(或立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体体积?
物体所占空间的大小叫做物体的体积。
52、圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、比例
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、圆柱
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。

三、小学数学量的计算单位及进率归类
1、长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷 1平方千米=1000000平方米
1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、质量单位及进率:吨、千克、公斤、克
1吨=1000千克 1千克=1公斤 1千克=1000克
5、时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年 1年=12月 1天=24小时 1小时=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,闰年2月29天)

四、常用计算公式表
1、长方形面积=长×宽,计算公式S=ab
2、正方形面积=边长×边长,计算公式S=a×a=a2
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2
4、正方形周长=边长×4,计算公式C=4a
5、平行四边形面积=底×高,计算公式S=ah
6、三角形面积=底×高÷2,计算公式S=a×h÷2
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2
8、长方体体积=长×宽×高,计算公式V=abh
9、圆的面积=圆周率×半径平方,计算公式V=πr2
10、正方体体积=棱长×棱长×棱长,计算公式V=a3
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh
12、圆柱的体积=底面积×高,计算公式V=sh
相似回答