大气压的变化还跟天气有关。在不同时间,同一地方的大气压并不完全相同。我们知道,水蒸气的密度比空气密度小,当空气中含有较多水蒸气时,空气密度要变小,大气压也随着降低。一般说来,阴雨天的大气压比晴天小,晴天发现大气压突然降低是将下雨的先兆;而连续下了几天雨发现大气压变大,可以预计即将转晴。另外,大气压的变化跟温度也有关系。因气温升高时空气密度变小,所以气温高时大气压比气温低时要小些
大气压不是固定不变的。为了比较大气压的大小,在1954年第十届国际计量大会上,科学家对大气压规定了一个“标准”:在纬度45°的海平面上,当温度为0℃时,760mm高水银柱产生的压强叫做标准大气压。既然是“标准”,在根据液体压强公式计算时就要注意各物理量取值的准确性。从有关资料上查得:0℃时水银的密度为13.595×10^3kg/m^3,纬度45°的海平面上的g值为9.806723N/kg。于是可得760mm高水银柱产生的压强为
P水银=ρ水银gh
=13.595×10^3kg/m^3×9.80672N/kg×0.76m
=1.01325×10^5Pa。
这就是1标准大气压的值,记为1atm。
国家标准GB1920-80 标准大气(30公里以下部分)规定:选取1976年美国标准大气,其30公里以下部分作为我国国家标准,30公里以上部分可参考使用。标准重力加速度g=9.80665 N/kg,海平面绝对温度T=288.150 K,海平面空气密度ρ=1.2250 kg/m^3。
在最近的科学工作中,为方便起见,有另外将1标准大气压定义为100kPa的,记为1bar。故提到标准大气压,也可以指100kPa。
温度、湿度与大气压强的关系:湿度越大大气压强越小。
初中物理老师告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高。”对这段叙述,就是老师也往往不易说清,笔者认为,这个问题可归结为温度、湿度与大气压强的关系问题。今谈谈自己的初步认识。
我们通常所称的大气,就是包围在地球周围的整个空气层。它除了含有氮气、氧气及二氧化碳等多种气体外,还含有水汽和尘埃。我们把含水汽很少(即湿度小)的空气称“干空气”,而把含水汽较多(即湿度大)的空气称“湿空气”。不要以为“干”的东西一定比“湿”的东西轻。其实,干空气的分子量是28.966,而水汽的分子量是18.016,故干空气分子要比水汽分子重。在相同状况下,干空气的密度也比水汽的密度大。水汽的密度仅为干空气密度的62%左右。
应当说,由于大气处于地球周围的一个开放空间,而不存在约束其运动范围的具体疆界,这就使它跟处于密闭容器中的气体不同。对一个盛有空气的密闭容器来说,只要容器中气体未达到饱和状态,那么,当我们向容器中输入水汽的时候,气体的压强必然会增加。而大气的情况则不然。当因自然因素或人为因素使某区域中的大气湿度增大时,则该区域中的“湿空气”分子(包括空气分子和水汽分子)必然要向周围地区扩散。其结果将导致该区域大气中的“干空气”含量比周围地区小,而水汽含量又比周围地区大。这犹如在大豆中掺入棉籽时其混合体密度要小于大豆密度一样,所以该区域的湿空气密度也就小于其它地区的干空气密度。这样,对该区域的一个单位底面积的气柱而言,其重量也就小于其它干空气地区同样的气柱这也就告诉我们,大气压随空气湿度的增大而减小。就阴天与晴天而言,实际上也就是阴天的空气湿度比晴天要大,因而阴天的大气压也就比晴天小。
我们知道,气体分子的“碰撞”是产生气体压强的根本原因。因而对大气压随空气湿度而变化的问题,我们也可以由此作出解释,根据气体分子运动的基本理论,气体分子的平均速率:
则气体分子的平均动量(仅考虑其大小)
由此可见,平均质量大的气体分子,其平均动量也大(有的文献中所言:“干空气的平均速度也大于湿空气”,是不正确的)。而对相同状况下的干空气与湿空气来说,由于干空气中的气体分子密度及分子的平均质量都比湿空气要大,且干空气分子的平均动量也比湿空气大,因而湿度小的干空气压强也就比湿度大的湿空气大。
当我们给盛有空气的密闭容器加热的时候,则其压强当然也会增大。而对大气来说情况就不同了。当某一区域的大气温度因某种因素而升高时,必将引起空气体积的膨胀,空气分子势必要向周围地区扩散。温度高,气体分子固然会运动得快些,这将成为促进压强增大的因素。但另一方面,随着温度的升高,气体分子便向周围扩散,则该区域内的气体分子数就要减少,从而形成一个促使压强减小的因素。而实际的情况乃是上述两种对立因素共同作用的结果。至于这两种因素中哪个起主要作用,我们不妨来看一看大陆及海洋上气压随气温变化的实际情况。我们说,夏季大陆上气温比海洋上高,由于大陆上的空气向海洋上扩散,而使大陆上的气压比海洋上低;冬季大陆气温比海洋上低,由于海洋上空气要向大陆上扩散,又使大陆上气压比海洋上高。而由此可见,在温度变化和分子扩散两个因素中,扩散起着主要的、决定性的作用。应当指出,这里所说的扩散,是指空气的横向流动。因为由空气的纵向流动并不能改变竖直气柱的重量(有的文献②把因温度而产生的气压变化说成是空气沉浮的结果,这是不妥的),因而也就不能改变大气的压强(对重力加速度g因高度变化而产生的影响完全可以忽略)。
由于地球上的大气总量是基本上恒定的。当一个地区的气温增加时,往往伴随着另一个地区温度的降低,这就为高温处的空气向低温处扩散带来了可能。而扩散的结果常常是高温处的气压比低温处低。当我们生活的北半球是接受太阳热量最多的盛夏时,南半球却是接受太阳热量最少的严冬。这时,由于北半球的空气要向南半球扩散而使北半球的气压较南半球要低。而由于大气总量基本不变,则此时北半球的气压就低于标准大气压,南半球的气压当然也就会高于标准大气压。同样,空气的反方向扩散又会使北半球冬季的气压高于标准大气压。因而,在北半球,冬季的大气压就会比夏季要高。当然,大气压的变化是很复杂的,但对中学课本上的说法作上述解释还是可以的很详细啊。
大气压一般表示为:1.01×105。
家用高压锅压力一般在1.7×105(114C),或兼带1.5×105(110C)、1.3×105(106C)。
在不同的季节,不同的气候条件和地理位置等条件下,地球上方大气压的值有所不同。本文择取大气压的五种主要变化,做一些分析讨论,供参考。 从微观角度看,决定气体压强大小的因素主要有两点:一是气体的密度n;二是气体的热力学温度T。在地球表面随地势的升高,地球对大气层气体分子的引力逐渐减小,空气分子的密度减小;同时大气的温度也降低。所以在地球表面,随地势高度的增加,大气压的数值是逐渐减小的。如果把大气层的空气看成理想气体,我们可以推得近似反映大气压随高度而变化的公式如下:
μ=p0gh/RT (μ为空气的平均摩尔质量,P0为地球表面处的大气压值,g为地球表面处的重力加速度,R为普适气体恒量,T为大气热力学温度,h为气柱高度)
由上式我们可以看出,在不考虑大气温度变化这一次要因素的影响时,大气压值随地理高度h的增加按指数规律减小,其函数图象如图所示。在2km以内,大气压值可近似认为随地理高度的增加而线性减小;在2km以外,大气压值随地理高度的增加而减小渐缓。所以过去在初中物理教材中有介绍:在海拔2千米以内,可以近似地认为每升高12米,大气压降低1毫米汞柱。 对于同一地区,在一天之内的不同时间,地面的大气压值也会有所不同,这叫大气压的日变化。一天中,地球表面的大气压有一个最高值和一个最低值。最高值出现在9~10时。最低值出现在15~16时。
导致大气压日变化的原因主要有三点。一是大气的运动;二是大气温度的变化;三是大气湿度的变化。 日出以后,地面开始积累热量,同时地面将部分热量输送给大气,大气也不断地积累热量,其温度升高湿度增大。当温度升高后,大气逐渐向高空做上升辐散运动,在下午15~16时,大气上升辐散运动的速度达最大值,同时大气的湿度也达较大值,由于此二因素的影响,导致一天中此时的大气压最低。16时以后,大气温度逐渐降低,其湿度减小,向上的辐散运动减弱,大气压值开始升高;进入夜晚;大气变冷开始向地面辐合下降,在上午9~10时,大气辐合下降压缩到最大程度,空气密度最大,此时的大气压是一天中的最高值。 同一地区,在一年之中的不同时间其大气压的值也有所不同。这叫大气压的年变化。大气压的年变化,具体又分为三种类型,即大陆型、海洋型和高山型。其中海洋型大气压的年变化刚好与大陆型的相反。通常所说的“冬天的大气压比夏天高”,指的就是大陆型大气压的年变化规律。下面对此略做分析(另外两种情况不做讨论)。
由于大气处于地球周围一个开放没有具体疆界的空间之内,这就使它与密闭容器中的气体有着很多区别。夏天,大陆中的气温比海洋上高,大气的湿度也比较大(相对冬天而言),这样大陆上的空气不断向海洋上扩散,导致其压强减小。到了冬天,大陆上气温比海洋上低,大陆上的空气湿度也较夏天小,这样海洋上的空气就向大陆上扩散,使大陆上的气压升高。这就是大陆上冬天的大气压比夏天高的原因(大气温度也是影响大气压的一个因素,但在这里决定大气压变化的因素不是气温,而是大气的流动及大气的密度)。 大气压随气候变化的情况比较多,但最为典型的就是晴天与阴天大气压的变化。有句谚语叫“晴天的大气压比阴天高”,反映的就是大气压的这一变化规律。 通常情况下,地面不断地向大气中进行长波有效辐射,同时大气也在不断地向地面进行逆辐射。晴天,地面的热量可以较为通畅地通过有效辐射和对流气层的向上辐散运动向外输运。阴天时,云层减少了对流层大气向外的辐散运动。云层这种保存地表和对液层热量的作用称为“温室效应”。这样,阴天地区的大气膨胀就比较厉害,从而导致阴天地区的大气横向向外扩散,使空气的密度减小,同时阴天地区大气的湿度比较大,也使大气的密度减小。因这两个因素的影响,从而导致阴天的大气压比晴天的大气压低。