用数学归纳法证明:1*n+2*(n-1)+3*(n-2)+...(n-1)*2+n*1=1\/6n(n+1...
证明:(1)n=1时,左=1=右。所以等式成立 (2)假设n=k时,有1*k+2*(k-1)+3*(k-2)+...(k-1)*2+k*1=1\/6k(k+1)(k+2)成立 那么,n=k+1时有:左=1*(k+1)+2*(k+1-1)+3*(k+1-2)+...+(k+1-1)*2+(k+1)*1 =1*[(k)+1]+2*[(k-1)+1]+3*[(k...
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1\/6)n(n+1...
右边=1\/6*1*2*3=1 左边=右边,等式成立!假设n=k时成立 (k>1)即:1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1\/6)k(k+1)(k+2)当n=k+1时;左边 =1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1 =1*k+1*1+2(k-1)+2*1+…+k*1+k+(k+1)...
数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1\/6)n(n+1)(n...
1*(k+1)+2(k+1-1)+3(k+1-2)+…+ (k+1-1)*2+(k+1)*1 =1*k+1*1+2(k-1)+2*1+3(k-2)+3*1+…+ k*1+[k+(k+1)](其中(k+1-1)*2+(k+1)*1=k*2+(k+1)*1= k*1+[k+(k+1)])=[1*k+2(k-1)+…+(k-1)*2+k*1]+[1+2+3+…+k+(k+1)](...
用数学归纳法证明 1×n+2×(n-1)+3×(n-2)+…+n×1=1\/6×n(n+1)(n
=1\/6×n(n+1)(n+2)+1\/2*(n+1)*(n+2)=(n+3)\/6(n+1)(n+2)=1\/6×(n+1)(n+2)(n+3)因为f(1)=1=1\/6*1*2*3 所以1×n+2×(n-1)+3×(n-2)+…+n×1=1\/6×n(n+1)(n+2)
用数学归纳法证明1乘以n+2乘以(n-1)+3(n-2)+...+n乘以1=6分之1n...
用公式计算:原式=n+2n-1*2+3n-2*3+4n-3*4+……n*n-(n-1)n =(n+2n+3n+4n+……n*n)-[1*2+2*3+3*4+4*5+……+(n-1)n]=n²(n+1)\/2+[1²+2²+3²+。。。+﹙n-1﹚²+1+2+3+。。。+﹙n-1﹚=n²(n+1)\/2+n(n+1)...
用数学归纳法证明1×n+2×(n-1)+3×(n-2)+……n×1=1÷6n(n+1)(n+2)
1.当n=1时,左边=1,右边=(1\/6)*1*(1+1)*(1+2)=1,左边=右边, 所以原等式成立. 2.设当n=k(k>=1),原等式也成立, 即1*k+2*(k-1)+3*(k-2)+...+k*1=(1\/6)k(k+1)(k+2)成立. 3.当n=k+1时,原等式的左边=1*(k+1)+2*[(k+1)-1]+3*[(k+1)-2]+...
用数学归纳法证明:1Xn+2X(n-1)+3X(n-2)+。。。+nX1=1\/6n(n+1)(n+2)
+3*(k-2)+……+(k-1)*2+k*1+1+2+3+……+k+(k+1)=[k(k+1)(k+2)]\/6+(k+1)(k+2)\/2 注意:这一步左边一半用的是归纳假设,右一半是等差数列 =[(k+1)(k+2)(k+3)]\/6 =[n(n+1)(n+2)]\/6 =右边成立 则由数学归纳法知,对于任意正整数n,该式成立。
1*n+2*(n-1)+3*(n-2)+…+n*1=1\/6n(n+1)(n+2)数学归纳法证明
证明:当n=1时,左边=1*1=1,右边=(1\/6)*1*2*3=1 左边=右边,等式成立。假设当n=k时,等式成立。即 1*k+2*(k-1)+……+(k-1)*2+k*1=(1\/6)*k*(k+1)*(k+2)当n=k+1时 左边=1*(k+1)+2*k+……+(k-1)*3+k*2+(k+1)*1 =[1*k+1*1]+[2*(k-1)+2...
求证1*n+2*(n-1)+3*(n-2)+…+n*1=n(n+1)(n+2)\/6
简单分析一下,答案如图所示
1xn+2x(n-1)+3x(n-2)+...+nx1=1\\6[n(n+1)(n+2)] 用数学归纳法证明
证明:(1)当n=1时,左边=1,右边=1,左边=右边,等式成立;(2)假设当n=k时命题成立,即1x k+2x(k-1)+3x(k-2)+...+kx1=1\\6[k(k+1)(k+2)] 成立,那么当n=k+1时,左边=1x(k+1)+2x[(k+1)-1]+3x(k+1)-2]+...+kx2+(k+1)x1={1x(k+1)+2x[(k-1)+1]+...